
Target Localization through Image Based Visual Servoing

Peter A. Greczner Matthew S. Rosoff

Cornell University Cornell University

Masters of Engineering 2010 Masters of Engineering 2010

pag42@cornell.edu msr53@cornell.edu

Abstract – This projects implements Image Based

Visual Servoing techniques to localize an AX-12 arm

gripper in relation to a target object. The AX-12 is a

multi-joint robotic arm that can be manipulated to

perform a variety of tasks such as grasping. In such a

task as grasping the target in question is usually not

known apriori and computer vision or other methods

are needed to locate such an object. Image based visual

servoing is a method that uses computer vision

algorithms to detect a target object and manipulator

object in the image frame. Based on an error function

relating the estimated poses of manipulator and target

object it attempts to move the manipulator so that the

error function minimizes. This project defines the error

function so that it minimizes the image frame x and y

Euclidian distance between manipulator and a sphere

points. The manipulator is located using SURF and the

target sphere is located using a combination of

thresholding, edge detection, and a circular hough

transform. Implementation of the algorithm is done in

ROS as a set of three services, one that publishes the

location of the target, one that publishes the location of

the manipulator, and a final service that communicates

with the AX-12 to move it to minimize the error

function. Our project successfully manipulated the

robotic arm to the target object with sub-inch accuracy.

I. INTRODUCTION

Visual servoing is a field of machine vision and

control that seeks to use video feedback to control

motion of a robotic system. Visual servoing can be

decomposed into 3 problems – Find objects in the

camera reference frame, convert coordinates to the

global frame (if necessary), and plan a path for

movement in the global frame. Visual Servoing is a

feedback technique, so it can be robust to some

uncertainties in formulating coordinates, scaling, and

dynamics in the problem. Additionally, visual

servoing does not require very specialized sensors or

instrumentation – just a video camera and a

processing unit. Visual servoing must make up for

sensing inaccuracies using software.

Consequentially, visual servoing algorithms are

plagued by many of the same problems most

computer vision algorithms face – noise, distortions,

lighting and environmental variability and

computational intensity. Visual servoing is a new

technology and was only first proposed in 1996 by S.

A. Hutchinson, G. D. Hager, and P. I. Corke (1) and

significantly improved upon in 2006 and 2007 by F.

Chaumette and S. Hutchinson (2). In 2006, visual

servoing was formalized into 2 distinct approaches –

Image Based Visual Servoing (IBVS) and Position

Based Visual Servoing (PBVS). Image based visual

servoing seeks to minimize errors in the image plane

of the camera while position based visual servoing

seeks to calculate then minimize errors in the global

reference frame.

II. CURRENT PROBLEM

Many robotic applications require some form of

manipulation of the robot based on environmental

data. One of these applications is robotic arm

manipulation in which the goal is to grasp or follow a

target object. While inverse kinematics can guide a

robotic arm to a desired position of an object, a

problem arises when that target object moves or its

position is unknown ahead of time.

In these situations it is necessary to use other sensing

techniques, such as laser data, vision algorithms, and

possibly ultra-sonic information. These techniques

create a more detailed picture of the unknown

environment.

III. PROPOSED SOLUTION

This project solves the aforementioned problem via

an implementation of Image Based Visual Servoing

(IBVS). IBVS attempts to solve this problem by

using monocular image data to locate a target in an

image and guide the manipulator towards the target.

In our design, we wrote software layers to allow a

claw to grab an object using just vision feedback. Our

design focuses heavily on modularity such that any

future contributors can improve, update, or adapt the

project to suit their individual needs. Modularity is

achieved through ROS nodes and adaptable

parameters. IBVS is inherently robust to changes in

the environment, so long as the coordinates it

receives remain accurate. There are 4 layers to our

software – image capture, object and claw detection,

high-level motion control, and low-level motor

control – all running in a message-passing ROS

package. The arm is already built by Crust Robotics

and the low-level motor controller is already written

by the University of Arizona in ROS

(smart_arm_controller package). Image capture is

performed using openCV with a video feed coming

from GStreamer in Linux. Object and claw detection

nodes receive the images through a topic subscription

in ROS and produce image plane Cartesian

coordinates. These coordinates are passed through a

topic to a high-level motion controller (IBVS) that

will motion plan and feed angular coordinates to the

low-level smart_arm_controller for motor actuation.

The change in environment will be detected by the

video camera, closing the feedback loop. Any of

these nodes can be modified to implement different

algorithms, providing modularity and flexibility in

implementation and testing.

A. Environment Details

This project was performed in the Robot Learning

Lab of Cornell University. The robotic arm that was

used was an AX-12 Crust Crawler (fig 1.). It is a

multi-joint robotic arm that uses servo motors as a

means of to manipulate the arm. Communication

with the arm is done via serial commands to specify

an absolute servo position of each motor; however

this communication layer is implemented by the

University of Arizona in their smart_arm_controller

ROS package. Writing these commands entails

setting up a topic in ROS, such as

shoulder_pan_controller/command and publishing to

that topic.

The video was captured

using a Microsoft

webcam that had an

image resolution of

1280x800 pixels. This

image information was

captured using the ROS

Probe package by

Brown University.

Image processing on the

incoming video stream

was done using

OpenCV. The Probe

package publishes the image data as an IplImage that

is native to OpenCV and then OpenCV processing

utilities can be used to extract appropriate

information and manipulate the image.

The testing environment was constrained to have

solid color background in the back of the scene. This

was done in order to minimize the scene noise as

much as possible so work could focus on algorithm

implementation as opposed to dealing with a noisy

environment.

B. Object Detection

Detecting objects in the image frame is a central

component of Image Based Visual Servoing. There

are two objects that have to be detected. The first is

the manipulator object- in particular the grasping

point of the manipulator. The second is the target

object to move your manipulator towards.

Typically, the geometry of the target object is known

apriori. The geometry and other information relating

to the manipulator grasper is also known.

In this project the target to be detected in the image is

a solid orange colored sphere. The manipulator is the

AX-12 claw.

1) Detecting the Target Sphere: Detecting the

target sphere was done by first color thresholding the

image to leave only the regions with high probability

that they were the sphere. This was done by

manually gathering RGB color data on the sphere in

each testing setting and threshold within one standard

deviation of each RGB.

pixel_score = 0

pixel_score += (Pixel(I,J).R > mu.R – std.R

&& Pixel(I,J) < mu.R + std.R) ? 1 : 0

pixel_score += (Pixel(I,J).G > mu.G – std.G

&& Pixel(I,J) < mu.G + std.G) ? 1 : 0

pixel_score += (Pixel(I,J).B > mu.B – std.B

&& Pixel(I,J) < mu.B + std.B) ? 1 : 0

Pixel(I,J) = (pixel_score == 3) ? Pixel(I,J)

: 0

After this step the image is converted to grayscale

color, canny-edge operated, and a Circular Hough

Transform is performed. The radii that are checked

are based on what the previous round radius was.

This is similar to setting a region of interest in an

image, only it sets radii of interests to speed up

computation.

Based on the list of returned circles the circle that is

determined to be the target sphere is the circle whose

color around the center best matches the target color.

The target finding program then publishes the image

frame’s x-coordinate, y-coordinate, and the radius of

the found sphere.

2) Detecting the Manipulator Object: Detection

of the manipulator object is done by using SURF.

SURF stands for Speeded Up Robust Features and is

used to detect scale and transform invariant features

Fig 1. AX-12 Arm

in an image. More details on SURF are discussed in

(6). We apply SURF to a basis image of the claw and

develop a vector of the features. This vector can then

be used to compare to all the features that are found

in each frame of video that is processed. Nearest

neighbor correlation is then performed between the

basis feature and the current frame’s feature to detect

the manipulator location and pose. After features

have been related between images the object is

located.

OpenCV was used to perform the SURF feature

extraction. It was speeded up by developing a region

of interest (ROI) around the probably manipulator.

When the algorithm is confident it has found the

grasper it sets the ROI within 200 pixels of the center

of the grasper, creating a 400x400 pixel image, which

approximately 1/6th the size of the input image. If

the algorithm loses the grasper at any point, the ROI

is expanded back to the full image size until the

grasper is found again.

The grasper finding program outputs the x-coordiante

and y-coordinate in the image frame along with a

scaling factor. The scaling factor is related to the

dimensions of the grasper and is used to get an idea

of the elevation of the grasper. This helps in making

the grasper co-planar with the target sphere.

C. Image Based Visual Servoing Implementation

After the objects have been detected and relevant

coordinate information in the image frame along with

pose information (radius, scale factor, etc.) has been

found, the image based visual servoing (IBVS)

algorithm runs.

IBVS works by trying to move the manipulator so

that a user-defined error function E(X) is minimized.

Where X is state information of the system. In this

project the state of the system are the

(Xsphere,Ysphere,Rsphere) and (Xgrasper,Ygrasper,Scalegrasper).

The user-defined error function is to minimize the

(Xsphere – Xgrasper) in the same plane of the

environment.

The IBVS program then works by subscribing to the

sphere topic and the grasper topic. It calculates E(X)

and calculates a dTheta, which is an angular velocity

for how the shoulder of the arm should move in order

to minimize E(X). dTheta is proportional to the

signed magnitude of E(X). Thus, for situations in

which the grasper is far away from the sphere, the

arm will move quicker, and as it approaches close to

the sphere, the arm will then move very slowly.

D. ROS Architecture and Services

Fig. 2. This image shows the general outline of ROS services

and functionality.

As shown in the figure above, all functionalities

reside in nodes in ROS. ROS is a Robot Operating

System that supports modular, message-passing code.

Our nodes are the Image retrieval, Claw Finder, Ball-

Finder, IBVS controller, and low-level smart arm

controller. We wrote the IBVS, claw finder, and ball

finder nodes. The other nodes were provided to us

from the University of Arizona in a ROS package.

This package is called “smart_arm_controller” under

the “ua_controllers” designation in the “ua-ros-pkg

stacks” ROS stack. This amazing stack can be

retrieved directly from the ROS website or via SVN.

The UA stack has so much support and information

on the AX-12 arm –more so than the CrustCrawler

website. ROS has a unique message-passing structure

that supports HTTP message passing. This means

that each node can run on any machine (except Image

Retrieval and smart arm controller because they

communicate directly with physical hardware). We

experimented with turning the lab into a ROS cluster

such that each computer can process one node. This

lead to a substantial speed-up when properly

launched; however there was some limitation when

passing large messages with the image frames in

them. Our code uses topics wherein nodes publish

and subscribe (as shown in the chart above).

IV. RESULTS

The algorithms were able to work successfully and

deduce where both grasper and target sphere were.

The SURF algorithm to find the grasper worked

approximately 70% of the time. The target sphere

detector was heavily dependent on lighting and color

information. However, this only required a onetime

analysis of the current environment during each

testing session to recalibrate the color information for

it to work correctly.

Image 1. This image shows what one frame of the IBVS
algorithm detects.

Image 1 shows how the IBVS algorithm processes

each frame of the image. It receives the information

from the target and claw services and draws on the

image a visual cue for what information is being sent

to it. The blue square represents the best guess for

the central region of the grasper, and the white

parallelogram is a best fit of the basis image to the

current frame. The green circle is an outline of the

target sphere. A line is drawn from the center of the

grasper to the target to show the current error

between the two positions. The IBVS then takes this

error, as described in section III.C and moves the

grasper towards the ball.

Fig. 3. Graph of E(X) over time, where time is the number of
iterations that the manipulator was moved towards the ball.

Figure 3 is a plot of the X component of the Error

vector against the iterations of our control loop (~25

sec). Notice that the error tends toward 0 in time, but

hovers around 20 pixels in the image frame. This

indicates an error of about 0.75” in the global

reference frame. We anticipate the error to approach

0, however there are reasons why this may not

happen exactly. Delays in the control loop cause

small oscillations seen in the graph above.

Additionally, we are using a simple 1st order

proportional controller without integral control to

drive the error slowly toward 0. We feel that the

error shown above is acceptable for many

applications (0.75” accuracy is decent in computer

vision).

V. CONCLUSIONS

Our project worked incredibly well and exceeded our

expectations and goals. The project minimized the

error between the claw and the ball down to sub-inch

accuracy. This is verified by looking at the error plot

below and noticing that the error converges to ~20

pixels in the image frame. This error is

approximately 0.75” in the global reference frame.

Our project is also highly modular-not only can a

user swap different algorithms in easily without

affecting the entire project, but the project can also

run across a cluster of computers for speedup.

If we had more time, we would have liked to

implement one of the other arm teams’ inverse

kinematics package so that we could minimize error

in the image-y direction better. Also, we would have

liked to take more physical error data to do a full

statistical analysis on the accuracy and precision of

our algorithms.

VI. OTHER NOTES

The code is in the Personal Robotics repository. It is

located in the applications folder under

demo_visual_servoing. There are three executables

that need to be run.

The first is cameraclick which is used to locate the

ball. It takes two parameters. The first is used for

the edge detector and is an integer. 50 is a good

choice. The second is the image topic, and that

should be /probe/image.

The second is Claw, which is used to locate the claw.

It also takes three parameters. The first is either a 0 if

you want to display the results in an image window,

and 2 if you do not want to open that image window.

The second parameter again should be /probe/image.

The third executable is IBVS which manipulates the

arm and runs the visual servoing algorithm. The

other two executables should be started before this is

run for best performance, but it isn’t completely

necessary. This also takes three parameters. Same

details as with Claw.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

ErrorX vs Time

E
rr

o
rX

 M
a
g
n
it
u
d
e
 (

p
ix

e
ls

)

T (iters)

If you have issues downloading and running from the

repository, please contact pag42@cornell.edu. I put

it in the repository and am not sure if I did it right

because it was called one package on my account, but

that package already existed in the repository so I

changed the name of the folder and added that. This

is because we started from a base package called

demo_ax12_camera which returned a camera feed

written by Dan. We continually modified that for our

project and since I didn’t want to overwrite his

updates to it in the repository, I went and changed our

folder to demo_visual_servoing.

One last note for the professor – We extended the

implementation of both the Claw detector and the

ball detector to use intelligent ROI in order to speed

up computation time, so where there was a lag in the

demo video, now the Claw grasper is up to around 6-

10 frames per second, which is much better than the

1-2 frames before. It seems a little bit more accurate

now too since it is looking at a smaller region of data.

Figured I’d add that in at the end since you seemed

interested in the robustness of the detection at the

poster presentation.

Overall, we enjoyed working on this project and

would like to thank you for help when we had to

switch to a completely new project topic right at the

midterm deadline.

REFERENCES

[1] S. A. Hutchinson, G. D. Hager, and P. I. Corke. A
tutorial on visual servo control. IEEE Trans. Robot.

Automat., 12(5):651--670, Oct. 1996.

[2] F. Chaumette, S. Hutchinson. Visual Servo Control,
Part I: Basic Approaches. IEEE Robotics and

Automation Magazine, 13(4):82-90, December 2006

[3] P. Martinet, J. Gallice. Position based visual servoing

using a non-linear approach. LASMEA, Universite

Blaise Pascal, UMR 6602 du CNRS.

[4] K. Deguchi. Image Based Visual Servoing with
Partitioned Approach. Graduate School of Information

Physics, Toboku University.

[5] D. Kragic, H.I. Christensen. Survey on Visual Servoing
for Manipulation. Centre for Autonomous Systems,

Numerical Analysis and Computer Science,

Fiskarorpsv. 15.A.
[6] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van

Gool, Speeded-Up Robust Features (SURF), Computer

Vision and Image Understanding, Volume 110, Issue 3,
Similarity Matching in Computer Vision and

Multimedia, June 2008, Pages 346-359

