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Abstract – This projects implements Image Based 

Visual Servoing techniques to localize an AX-12 arm 

gripper in relation to a target object.  The AX-12 is a 

multi-joint robotic arm that can be manipulated to 

perform a variety of tasks such as grasping.  In such a 

task as grasping the target in question is usually not 

known apriori and computer vision or other methods 

are needed to locate such an object.  Image based visual 

servoing is a method that uses computer vision 

algorithms to detect a target object and manipulator 

object in the image frame.  Based on an error function 

relating the estimated poses of manipulator and target 

object it attempts to move the manipulator so that the 

error function minimizes.  This project defines the error 

function so that it minimizes the image frame x and y 

Euclidian distance between manipulator and a sphere 

points.  The manipulator is located using SURF and the 

target sphere is located using a combination of 

thresholding, edge detection, and a circular hough 

transform.  Implementation of the algorithm is done in 

ROS as a set of three services, one that publishes the 

location of the target, one that publishes the location of 

the manipulator, and a final service that communicates 

with the AX-12 to move it to minimize the error 

function.  Our project successfully manipulated the 

robotic arm to the target object with sub-inch accuracy. 

I. INTRODUCTION 

Visual servoing is a field of machine vision and 

control that seeks to use video feedback to control 

motion of a robotic system.  Visual servoing can be 

decomposed into 3 problems – Find objects in the 

camera reference frame, convert coordinates to the 

global frame (if necessary), and plan a path for 

movement in the global frame.  Visual Servoing is a 

feedback technique, so it can be robust to some 

uncertainties in formulating coordinates, scaling, and 

dynamics in the problem.  Additionally, visual 

servoing does not require very specialized sensors or 

instrumentation – just a video camera and a 

processing unit.  Visual servoing must make up for 

sensing inaccuracies using software.  

Consequentially, visual servoing algorithms are 

plagued by many of the same problems most 

computer vision algorithms face – noise, distortions, 

lighting and environmental variability and 

computational intensity.  Visual servoing is a new 

technology and was only first proposed in 1996 by S. 

A. Hutchinson, G. D. Hager, and P. I. Corke (1) and 

significantly improved upon in 2006 and 2007 by F. 

Chaumette and S. Hutchinson (2).  In 2006, visual 

servoing was formalized into 2 distinct approaches – 

Image Based Visual Servoing (IBVS) and Position 

Based Visual Servoing (PBVS).  Image based visual 

servoing seeks to minimize errors in the image plane 

of the camera while position based visual servoing 

seeks to calculate then minimize errors in the global 

reference frame. 

II. CURRENT PROBLEM 

Many robotic applications require some form of 

manipulation of the robot based on environmental 

data.  One of these applications is robotic arm 

manipulation in which the goal is to grasp or follow a 

target object.  While inverse kinematics can guide a 

robotic arm to a desired position of an object, a 

problem arises when that target object moves or its 

position is unknown ahead of time. 

In these situations it is necessary to use other sensing 

techniques, such as laser data, vision algorithms, and 

possibly ultra-sonic information.  These techniques 

create a more detailed picture of the unknown 

environment. 

III. PROPOSED SOLUTION 

This project solves the aforementioned problem via 

an implementation of Image Based Visual Servoing 

(IBVS).  IBVS attempts to solve this problem by 

using monocular image data to locate a target in an 

image and guide the manipulator towards the target. 

In our design, we wrote software layers to allow a 

claw to grab an object using just vision feedback. Our 

design focuses heavily on modularity such that any 

future contributors can improve, update, or adapt the 

project to suit their individual needs.  Modularity is 

achieved through ROS nodes and adaptable 

parameters.  IBVS is inherently robust to changes in 

the environment, so long as the coordinates it 

receives remain accurate.  There are 4 layers to our 

software – image capture, object and claw detection, 

high-level motion control, and low-level motor 



control – all running in a message-passing ROS 

package.  The arm is already built by Crust Robotics 

and the low-level motor controller is already written 

by the University of Arizona in ROS 

(smart_arm_controller package).   Image capture is 

performed using openCV with a video feed coming 

from GStreamer in Linux.  Object and claw detection 

nodes receive the images through a topic subscription 

in ROS and produce image plane Cartesian 

coordinates.  These coordinates are passed through a 

topic to a high-level motion controller (IBVS) that 

will motion plan and feed angular coordinates to the 

low-level smart_arm_controller for motor actuation.  

The change in environment will be detected by the 

video camera, closing the feedback loop.  Any of 

these nodes can be modified to implement different 

algorithms, providing modularity and flexibility in 

implementation and testing. 

A. Environment Details 

This project was performed in the Robot Learning 

Lab of Cornell University.  The robotic arm that was 

used was an AX-12 Crust Crawler (fig 1.).  It is a 

multi-joint robotic arm that uses servo motors as a 

means of to manipulate the arm.  Communication 

with the arm is done via serial commands to specify 

an absolute servo position of each motor; however 

this communication layer is implemented by the 

University of Arizona in their smart_arm_controller 

ROS package.  Writing these commands entails 

setting up a topic in ROS, such as 

shoulder_pan_controller/command and publishing to 

that topic. 

The video was captured 

using a Microsoft 

webcam that had an 

image resolution of 

1280x800 pixels.  This 

image information was 

captured using the ROS 

Probe package by 

Brown University. 

Image processing on the 

incoming video stream 

was done using 

OpenCV.  The Probe 

package publishes the image data as an IplImage that 

is native to OpenCV and then OpenCV processing 

utilities can be used to extract appropriate 

information and manipulate the image. 

The testing environment was constrained to have 

solid color background in the back of the scene.  This 

was done in order to minimize the scene noise as 

much as possible so work could focus on algorithm 

implementation as opposed to dealing with a noisy 

environment.  

B. Object Detection 

Detecting objects in the image frame is a central 

component of Image Based Visual Servoing.  There 

are two objects that have to be detected.  The first is 

the manipulator object- in particular the grasping 

point of the manipulator.  The second is the target 

object to move your manipulator towards. 

Typically, the geometry of the target object is known 

apriori. The geometry and other information relating 

to the manipulator grasper is also known. 

In this project the target to be detected in the image is 

a solid orange colored sphere.  The manipulator is the 

AX-12 claw. 

1) Detecting the Target Sphere: Detecting the 

target sphere was done by first color thresholding the 

image to leave only the regions with high probability 

that they were the sphere.  This was done by 

manually gathering RGB color data on the sphere in 

each testing setting and threshold within one standard 

deviation of each RGB. 

pixel_score = 0 

pixel_score += (Pixel(I,J).R > mu.R – std.R 

&& Pixel(I,J) < mu.R + std.R) ? 1 : 0 

pixel_score += (Pixel(I,J).G > mu.G – std.G 

&& Pixel(I,J) < mu.G + std.G) ? 1 : 0 

pixel_score += (Pixel(I,J).B > mu.B – std.B 

&& Pixel(I,J) < mu.B + std.B) ? 1 : 0 

Pixel(I,J) = (pixel_score == 3) ? Pixel(I,J) 

: 0 

 

After this step the image is converted to grayscale 

color, canny-edge operated, and a Circular Hough 

Transform is performed.  The radii that are checked 

are based on what the previous round radius was.  

This is similar to setting a region of interest in an 

image, only it sets radii of interests to speed up 

computation. 

Based on the list of returned circles the circle that is 

determined to be the target sphere is the circle whose 

color around the center best matches the target color. 

The target finding program then publishes the image 

frame’s x-coordinate, y-coordinate, and the radius of 

the found sphere. 

2) Detecting the Manipulator Object: Detection 

of the manipulator object is done by using SURF.  

SURF stands for Speeded Up Robust Features and is 

used to detect scale and transform invariant features 

Fig 1. AX-12 Arm 



in an image. More details on SURF are discussed in 

(6).  We apply SURF to a basis image of the claw and 

develop a vector of the features.  This vector can then 

be used to compare to all the features that are found 

in each frame of video that is processed.  Nearest 

neighbor correlation is then performed between the 

basis feature and the current frame’s feature to detect 

the manipulator location and pose.  After features 

have been related between images the object is 

located. 

OpenCV was used to perform the SURF feature 

extraction.  It was speeded up by developing a region 

of interest (ROI) around the probably manipulator.  

When the algorithm is confident it has found the 

grasper it sets the ROI within 200 pixels of the center 

of the grasper, creating a 400x400 pixel image, which 

approximately 1/6th the size of the input image.  If 

the algorithm loses the grasper at any point, the ROI 

is expanded back to the full image size until the 

grasper is found again. 

The grasper finding program outputs the x-coordiante 

and y-coordinate in the image frame along with a 

scaling factor.  The scaling factor is related to the 

dimensions of the grasper and is used to get an idea 

of the elevation of the grasper.  This helps in making 

the grasper co-planar with the target sphere. 

C. Image Based Visual Servoing Implementation 

After the objects have been detected and relevant 

coordinate information in the image frame along with 

pose information (radius, scale factor, etc.) has been 

found, the image based visual servoing (IBVS) 

algorithm runs. 

IBVS works by trying to move the manipulator so 

that a user-defined error function E(X) is minimized.  

Where X is state information of the system.  In this 

project the state of the system are the 

(Xsphere,Ysphere,Rsphere) and (Xgrasper,Ygrasper,Scalegrasper).  

The user-defined error function is to minimize the 

(Xsphere – Xgrasper) in the same plane of the 

environment. 

The IBVS program then works by subscribing to the 

sphere topic and the grasper topic.  It calculates E(X) 

and calculates a dTheta, which is an angular velocity 

for how the shoulder of the arm should move in order 

to minimize E(X).  dTheta is proportional to the 

signed magnitude of E(X).  Thus, for situations in 

which the grasper is far away from the sphere, the 

arm will move quicker, and as it approaches close to 

the sphere, the arm will then move very slowly.   

D. ROS Architecture and Services 

 

Fig. 2. This image shows the general outline of ROS services 

and functionality. 

As shown in the figure above, all functionalities 

reside in nodes in ROS.  ROS is a Robot Operating 

System that supports modular, message-passing code.  

Our nodes are the Image retrieval, Claw Finder, Ball-

Finder, IBVS controller, and low-level smart arm 

controller.  We wrote the IBVS, claw finder, and ball 

finder nodes.  The other nodes were provided to us 

from the University of Arizona in a ROS package. 

This package is called “smart_arm_controller” under 

the “ua_controllers” designation in the “ua-ros-pkg 

stacks” ROS stack.  This amazing stack can be 

retrieved directly from the ROS website or via SVN.  

The UA stack has so much support and information 

on the AX-12 arm –more so than the CrustCrawler 

website. ROS has a unique message-passing structure 

that supports HTTP message passing.  This means 

that each node can run on any machine (except Image 

Retrieval and smart arm controller because they 

communicate directly with physical hardware).  We 

experimented with turning the lab into a ROS cluster 

such that each computer can process one node.  This 

lead to a substantial speed-up when properly 

launched; however there was some limitation when 

passing large messages with the image frames in 

them. Our code uses topics wherein nodes publish 

and subscribe (as shown in the chart above). 

IV. RESULTS 

The algorithms were able to work successfully and 

deduce where both grasper and target sphere were.  

The SURF algorithm to find the grasper worked 

approximately 70% of the time.  The target sphere 

detector was heavily dependent on lighting and color 

information.  However, this only required a onetime 

analysis of the current environment during each 



testing session to recalibrate the color information for 

it to work correctly. 

 

Image 1. This image shows what one frame of the IBVS 
algorithm detects. 

Image 1 shows how the IBVS algorithm processes 

each frame of the image.  It receives the information 

from the target and claw services and draws on the 

image a visual cue for what information is being sent 

to it.  The blue square represents the best guess for 

the central region of the grasper, and the white 

parallelogram is a best fit of the basis image to the 

current frame.  The green circle is an outline of the 

target sphere.  A line is drawn from the center of the 

grasper to the target to show the current error 

between the two positions.  The IBVS then takes this 

error, as described in section III.C and moves the 

grasper towards the ball. 

 
 

Fig. 3. Graph of E(X) over time, where time is the number of 
iterations that the manipulator was moved towards the ball. 

Figure 3 is a plot of the X component of the Error 

vector against the iterations of our control loop (~25 

sec).  Notice that the error tends toward 0 in time, but 

hovers around 20 pixels in the image frame.  This 

indicates an error of about 0.75” in the global 

reference frame.   We anticipate the error to approach 

0, however there are reasons why this may not 

happen exactly.  Delays in the control loop cause 

small oscillations seen in the graph above.  

Additionally, we are using a simple 1st order 

proportional controller without integral control to 

drive the error slowly toward 0.  We feel that the 

error shown above is acceptable for many 

applications (0.75” accuracy is decent in computer 

vision). 

V. CONCLUSIONS 

Our project worked incredibly well and exceeded our 

expectations and goals.  The project minimized the 

error between the claw and the ball down to sub-inch 

accuracy.  This is verified by looking at the error plot 

below and noticing that the error converges to ~20 

pixels in the image frame.  This error is 

approximately 0.75” in the global reference frame.  

Our project is also highly modular-not only can a 

user swap different algorithms in easily without 

affecting the entire project, but the project can also 

run across a cluster of computers for speedup.  

If we had more time, we would have liked to 

implement one of the other arm teams’ inverse 

kinematics package so that we could minimize error 

in the image-y direction better.  Also, we would have 

liked to take more physical error data to do a full 

statistical analysis on the accuracy and precision of 

our algorithms. 

VI. OTHER NOTES 

The code is in the Personal Robotics repository.  It is 

located in the applications folder under 

demo_visual_servoing.  There are three executables 

that need to be run.   

The first is cameraclick which is used to locate the 

ball.  It takes two parameters.  The first is used for 

the edge detector and is an integer.  50 is a good 

choice.  The second is the image topic, and that 

should be /probe/image.   

The second is Claw, which is used to locate the claw.  

It also takes three parameters.  The first is either a 0 if 

you want to display the results in an image window, 

and 2 if you do not want to open that image window.  

The second parameter again should be /probe/image.   

The third executable is IBVS which manipulates the 

arm and runs the visual servoing algorithm.  The 

other two executables should be started before this is 

run for best performance, but it isn’t completely 

necessary.  This also takes three parameters.  Same 

details as with Claw. 
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If you have issues downloading and running from the 

repository, please contact pag42@cornell.edu.  I put 

it in the repository and am not sure if I did it right 

because it was called one package on my account, but 

that package already existed in the repository so I 

changed the name of the folder and added that.  This 

is because we started from a base package called 

demo_ax12_camera which returned a camera feed 

written by Dan.  We continually modified that for our 

project and since I didn’t want to overwrite his 

updates to it in the repository, I went and changed our 

folder to demo_visual_servoing. 

One last note for the professor – We extended the 

implementation of both the Claw detector and the 

ball detector to use intelligent ROI in order to speed 

up computation time, so where there was a lag in the 

demo video, now the Claw grasper is up to around 6-

10 frames per second, which is much better than the 

1-2 frames before.  It seems a little bit more accurate 

now too since it is looking at a smaller region of data.  

Figured I’d add that in at the end since you seemed 

interested in the robustness of the detection at the 

poster presentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, we enjoyed working on this project and 

would like to thank you for help when we had to 

switch to a completely new project topic right at the 

midterm deadline. 
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